SESSION 1. Structure and Characterization of Nanomaterials

  • Baig et al. 2021. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mat Adv, 2, 1821. Doi:10.1039/D0MA00807A.
  • Mitchell S and Pérez-Ramírez J. 2021. Atomically precise control in the design of low-nuclearity supported metal catalysts. Nature Review Mat 6, 969. DOI:10.1038/ s41578-021-00360-6.
  • Moirdikoudis et al 2018. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticles properties. Nanoscale, 10, 12871. Doi:10.1039/c8nr02278j.
  • Tyo EC and Vajda S. 2015. Catalysis by clusters with precise numbers of atoms. Nature Nanotechnol, 10, 577. Doi:10.1038/NNANO.2015.140.


SESSION 2. Nano-Enabled Agriculture (part I)

  • EFSA Scientific Committee et al. 2021a. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA Journal 19,8, 6768. Doi:10.2903/j.efsa.2021.6768.
  • EFSA Scientific Committee et al. 2021b. Guidance on technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles. EFSA Journal 19, 8, 6769. Doi:10.2903/j.efsa.2021.6769.
  • Khan et al. 2022. Applications of nanotechnology-based agrochemicals in food security and sustainable agriculture: An overview. Agriculture 2022, 12, 1672. Doi:10.3390/agriculture12101672.
  • Marchiol et al 2020. Nanotechnology support the next agricultural revolution: perspectives to enhancement of Nutrient Use Efficiency. Adv Agron 161, 27-116. Doi:10.1016/bs.agron.2019.12.001.
  • Schoonjans et al. 2023. Regulatory safety assessment of nanoparticles for the food chain in Europe. Trends Food Sci Technol. Doi:10.1016/j.tifs.2023.01.017.


SESSION 3 - Nano-Enabled Agriculture (part II)


  • Kookana et al. 2014. Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem. 62, 4227−4240. Doi:10.1021/jf500232f.
  • Lowry et al. 2019. Opportunities and challenges for nanotechnology in the Agri-tech revolution. Nature Nanotechnol. 14,517-22. Doi:10.1038/s41565-019-0461-7.
  • Granetto et al. 2020. Natural clay and biopolymer-based nano pesticides to control the environmental spread of a soluble herbicide. Sci Total Environ, 806, 3, 151199. Doi: 10.1016/j.scitotenv.2021.151199.
  • Garlando U et al. 2022. Ask the plants directly: Understanding plant needs using electrical impedance measurements, Computers and Electronics in Agriculture, 193, 106707. Doi:10.1016/j.compag.2022.106707.
  • Garlando U et al. 2021. Let The Plants Do the Talking: Listen to Them and Let Them Tell You How They Feel," in Technology and Agribusiness: How the Technology is Impacting the Agribusiness, River Publishers, pp.257-395.
  • Bar-On et al. 2021. Electrical Modelling of In-Vivo Impedance Spectroscopy of Nicotiana tabacum Plants. Frontiers. Collection. Doi:10.3389/felec.2021.753145.
  • Garlando et al. 2020. Towards Optimal Green Plant Irrigation: Watering and Body Electrical Impedance. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). Doi:10.1109/ISCAS45731.2020.9181290.
  • Motto Ros et al. 2019. Electronic system for signal transmission inside green plant body. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). Doi:10.1109/ISCAS.2019.8702577


SESSION 4 - Engineered Nanomaterials and Plant Nutrition

  • Pagano et al., 2016. Molecular response of crop plants to engineered nanomaterials. Environ Sci Technol, 50, 13, 7198-7207. Doi:10.1021/acs.est.6b01816.
  • Marmiroli M et al. 2021. Copper Oxide nanomaterial fate in plant tissue: Nanoscale impacts on reproductive tissues. Environ Sci Technol, 55, 15, 10769-10783. Doi:10.1021/acs.est.1c01123.
  • Pagano et al. 2022. Engineered nanomaterial exposure affects organelle genetic material replication in Arabidopsis thaliana. ACS Nano. 16, 2, 2249-2260. Doi:10.1021/acsnano.1c08367.
  • Harris et al., 2023. Nanotechnology – A new frontier of nano-farming in agricultural and food production and its development. Science of the Total Environment, 857, 159639. Doi:10.1016/j.scitotenv.2022.159639.
  • Zulfiqar et al., 2019. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science 289, 110270. Doi:10.1016/j.plantsci.2019.110270.


SESSION 5 - Engineered Nanomaterials Plant Protection

  • Schiavi et al. 2023. Sustainable protocols for cellulose nanocrystals synthesis from tomato waste and their antimicrobial properties against Pseudomonas syringae pv. tomato. Plants 12, 4, 939. Doi:10.3390/plants12040939.
  • Francesconi et al. 2022. Basalt-based novel agrochemicals demonstrated in vitro antimicrobial activities against fungal and bacterial plant pathogens. J Plant Pathol 104, 1207–1280. Doi:10.1007/s42161-022-01234-8.
  • Schiavi et al., 2022. Exploring cellulose nanocrystals obtained from olive tree wastes as sustainable crop protection tool against bacterial diseases. Sci Rep, 12, 6149, Doi:10.1038/s41598-022-10225-9.
  • Schiavi et al., 2022. Circular hazelnut protection by lignocellulosic waste valorization for nanopesticides development. Appl Sci 12, 2604. Doi:10.3390/app12052604.
  • Sheikh Mohamed M and Sakthi Kumar, D. 2019. Application of nanotechnology in genetic improvement in crops. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. Doi:10.1007/978-3-319-97852-9_1.
  • Gad et al. 2020. Nanomaterials for gene delivery and editing in plants: Challenges and future perspective. In: Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. Elsevier, pp 135-153. Doi:10.1016/B978-0-12-821354-4.00006-6.
  • Godze et al. 2021. Nanotechnology to advance CRISPS-Cas genetic engineering of plants, Nature Nanotechnol. Doi:10.1038/s41565-021-00854-y.
  • Elmer W, JC White. 2018, The future of nanotechnology in plant pathology, Annual Rev Phytopathol. 56, 111-133. Doi:10.1146/annurev-phyto-080417-050108.


SESSION 6 - Nano-Enabled Agriculture and Circular Economy

  • Balakshin et al., 2021. New opportunities in the valorization of technical lignins. ChemSusChem 14, 4, 1016-1036. Doi:10.1002/cssc.202002553.
  • Farhatun Najat Maluin FN and Hussein MZ. 2020. Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules 25, 7, 1611. Doi:10.3390/molecules25071611.
  • Fellet et al. 2022. Tools for nano-enabled agriculture: fertilizers based on calcium phosphate, silicon, and chitosan nanostructures. Agronomy, 11, 1239. Doi:10.3390/agronomy11061239.
  • Gigli et al., 2022. Lignin-based nano-enabled agriculture: a mini-review. Front Plant Sci. 13. Doi:10.3389/fpls.2022.976410.
  • Gigli M and Crestini, C. 2020. Fractionation of Industrial Lignins: Opportunities and Challenges. Green Chem. 22, 15, 4722-4746. Doi:10.1039/D0GC01606C.
  • Kashyap et al. 2015. Chitosan nanoparticle-based delivery systems for sustainable agriculture. Int J Biol Macromol, 77, 36-51. Doi:10.1016/j.ijbiomac.2015.02.039.
  • Laurichesse S and Avérous L. 2014. Chemical modification of lignins: towards biobased polymers. Prog Polym Sci. 39, 7, 1266-1290. Doi:10.1016/j.progpolymsci.2013.11.004.
  • Malerba M and Cerana R. 2016. Chitosan effects on plant systems. Int J Mol Sci, 17, 996. Doi:10.3390/ijms17070996.
  • Ragauskas et al., 2014. Lignin valorization: improving lignin processing in the biorefinery. Science 344, 6185, 1246843. Doi:10.1126/science.1246843.
  • Sgarzi et al., 2022. Simple strategies to modulate the pH-responsiveness of lignosulfonate-based delivery systems. Materials, 15, 1857. Doi:10.3390/ma15051857.
  • Sipponen et al., 2019. Lignin for nano- and microscaled carrier systems: applications, trends, and challenges. ChemSusChem 12, 10, 2039-2054. Doi:10.1002/cssc.201900480.